Preliminary communication

Improved synthesis of pentabromophenylmagnesium bromide and 1,2,4,5tetrabromophenylbis(magnesium bromide)

CHARLES F. SMITH, GEORGE J. MOORE, and CHRIST TAMBORSKI Air Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433 (U.S.A.) (Received October 6th, 1971)

In earlier work, Durand and co-workers¹ studied the reaction between hexabromobenzene^{*} and methyl- and phenylmagnesium bromide. The only products obtained upon hydrolysis, and in very low yields, were hexamethyl- and 1,2,4,5tetraphenylbenzene² respectively. Much later, Berry and Wakefield³ reported the reaction between hexabromobenzene and magnesium in tetrahydrofuran (THF), utilizing 1,2dibromoethane as the entrainer. After hydrolysis of the reaction mixture, pentabromobenzene was obtained in 25% yield. The same reaction using diethyl ether as solvent yielded pentabromobenzene in less than 5%.

We wish to report an improved synthesis of pentabromophenylmagnesium bromide (I) through the reaction between hexabromobenzene and ethyl- or phenylmagnesium bromide in tetrahydrofuran (1). Pentabromophenylmagnesium

bromide (I) was generated by the dropwise addition of phenylmagnesium bromide (or ethylmagnesium bromide) to a cooled (0°) THF slurry of hexabromobenzene. As Grignard reagent I formed, the slurry cleared. After 4 h of vigorous stirring at 0° (1 h for ethylmagnesium bromide), hydrolysis of an aliquot sample and subsequent GLC analysis indicated pentabromobenzene (95%) as the major product (Table 1). Concentration of

represents C_6Br_6 ; substituents other than Br are indicated e.g. (Br)

TABLE I

RMgX	Solvent	Temp Time		Products (after hydrolysis); Yield (%)					
		(°C)) (h)	H	H-(B)-H	H	Br	C2H5 Br	C ₂ H ₅ Br H
C ₆ H ₅ MgBr	THF	0	4	95	< 1	< 1	94		
C ₆ H ₅ MgBr	THF	0	48	82	< 1	2	94		
C ₆ H ₅ MgBr	Et_2O	25	2		u	4	8		
C ₆ H ₅ MgBr	Et ₂ O	35	23	20	1	< 1	34		
C ₂ H ₅ MgBr	THF	0	1	95	1	< 1			
C ₂ H ₅ MgBr	THF	0	48	48	< 1	< 1		_	_
-233		-		$(100)^{b}$	$\hat{\mathbf{u}}^{b}$	ີ ເມື ⁸		(47) ^b	$(15)^b$
C ₂ H ₅ MgBr	Et ₂ O	0	4	68	7	(-)		()	(10)
C_2H_5MgBr	Et ₂ O	0	24	61	6	1			

REACTIONS OF HEXABROMOBENZENE WITH GRIGNARD REAGENTS (1/1)

^aBecause the reaction mixture was nonhomogeneous, the extent of Grignard exchange was monitored by the formation of bromobenzene. ^bGLC ratio of area under each peak, with 100 being assigned to peak with largest area, absolute yields of the ethylated products were not determined.

this solution to a solid, followed by recrystallization from ethanol gave pentabromobenzene as a white powder, m.p. 160–161° (lit.⁴ m.p. 159–160°); mass spectral analysis gave parent ion peak m/e 468, C_6 ⁷⁹ Br₅H calcd.: m/e 468. Also found present, by GLC-mass spectral analysis, were trace amounts (< 1%) of 1,2,4,5-tetrabromobenzene, m.p. 177.5–179° (lit.⁵ m.p. 182°) and 1,2,3,5-tetrabromobenzene, m.p. 93–95° (lit.⁶ m.p. 98°).

Similar reactions carried out in diethyl ether gave Grignard reagent I in lower yield, particularly when phenylmagnesium bromide was employed. It was later found that a 100% excess of ethylmagnesium bromide gave Grignard reagent I in 91% yield (Table 2).

TABLE 2

REACTIONS OF	HEXABROMOBENZENE	WITH GRIGNARD	REAGENTS (1/2)

2 RMgX	Solvent	Temp	Time	Products (after hydrolysis); Yield (%)					
		(°C) (h)	(n)	H-(B)-H	H	H H	Br	C ₂ H ₅ Br H	H Br H
C ₂ H ₅ MgBr	THF	0	0.75	51		25			·····
C ₂ H ₅ MgBr	THF	0	24	8	1	10		-	_
				(51) ^a		(78) ^a		$(100)^{a}$	$(23)^{a}$
C ₂ H ₅ MgBr	Et ₂ O	25	1 -	7		91		、>	()
C_2H_5MgBr	Et ₂ O	25	23	19		80			
C ₆ H ₅ MgBr	THF	0	4	2	1	96	52		
C ₆ H ₅ MgB::	THF	25	48	2	3	17	64		

^aGLC ratio of area under each peak, with 100 being assigned to peak with largest area.

However, the formation of the di-Grignard reagent II, although it occurs only to a small degree (7%), limits the utility of this method in diethyl ether.

When using stoichiometric amounts of reactants, the lower yield of Grignard reagent I in diethyl ether (vs. THF) can be attributed to two factors. Firstly, THF is a better solvating agent than diethyl ether in the formation of Grignard reagents, and secondly, in diethyl ether the insolubility of hexabromobenzene as well as the Grignard reagent I formed, causes the exchange to proceed in a partially heterogeneous system, resulting in a lower rate of exchange.

Pentabromophenylmagnesium bromide (I) is less stable at 0° than pentafluoro-7 and pentachlorophenylmagnesium bromide⁸. Decomposition is much faster for $C_6 Br_5 MgBr$ in the presence of ethyl bromide (vs. bromobenzene). with the formation of ethylated products being the major path of decomposition (Table 1).

Refluxing C₆ Br₅ MgBr in THF further promoted an intermolecular metal-halogen exchange reaction resulting in the formation of hexabromobenzene and 1,2,4,5-tetrabromophenylbis(magnesium bromide) (II). Two other products were isolated and partially characterized. Through mass spectral analysis, the following formulas were determined: $C_{10}H_6$ Br₄ O and $C_{10}H_8$ Br₄ O. NMR analyses of these samples, which were separated by preparative TLC (silica gel), indicated the products to be the result of the reaction between $C_6 Br_5 MgBr$ and the solvent THF. Further studies to elucidate their structure are in progress.

In recent publications Strand⁹ and Delorme¹⁰ concluded from electron diffraction and IR measurements that hexabromobenzene is nonplanar with the bromide atoms lying alternately above and below the nucleus. In considering the formation of the di-Grignard reagent, in terms of steric relief only, the most favored isomer would be the 1,2,4,5-tetrabromophenylbis(magnesium bromide) (II). This argument agrees well with the data presented in Table 2. Although in all cases the di-Grignard reagent is formed in low yield (3-51%), the results indicated that the di-Grignard reagent II is favored over 1,2,3,5tetrabromophenylbis(magnesium bromide); no 1,2,3,4-tetrabromophenylbis(magnesium bromide) was detected. The most favorable conditions for the formation of the di-Grignard reagent II are those utilizing ethylmagnesium bromide in THF. Yields of 1,2,4,5-tetrabromobenzene as high as 51% have been obtained thus far. The di-Grignard reagent (II) prepared in this manner is much less stable than $C_6 Br_5 MgBr$ prepared under similar conditions, with formation of ethylated products being the major path of decomposition (see Tables 1 and 2).

Attempted synthesis of the di-Grignard reagent via phenylmagnesium bromide gave only trace amounts of 1,2,4,5- and 1,2,3,5-tetrabromophenylbis(magnesium bromide). The major product of this reaction was $C_6 Br_5 MgBr$ obtained in 96% yield.

REFERENCES

- 1 J.F. Durand and Lai Wai Hsun, C.R. Acad. Sci. Paris, 191 (1930) 1460.
- W. Diltney and G. Hurtig. Ber., 67 (1934) 2004.
 D.J. Berry and B.J. Wakefield, J. Chem. Soc. C, (1969) 2342.
- 4 P. Jacobson and A. Loeb, Ber., 33 (1900) 702.
- 5 T. Van der Linden, Rec. trav. chim. Pays Bas, 57 (1938) 781.

- 6 H.H. Hodgson and A.P. Mahadevan, J. Chem. Soc., (1947) 173.
- 7 E. Nield, R. Stephens, and J.C. Tatlow, J. Chem. Soc., (1959) 166.
- 8 H.E. Ramsden, A.E. Balint, W.R. Whitford, J.J. Walburn and R. Cserr, J. Org. Chem., 22 (1957) 1202.
- 9 T.G. Strand, Acta Chem. Scand., 21 (1967) 1033.
 10 P. Delorme, F. Denisselle and V. Lorenzelli, J. Chim. Phys., 64 (1967) 591.